
DOI: 10.1007/s10910-005-9043-z
Journal of Mathematical Chemistry, Vol. 39, No. 2, February 2006 (© 2005)

Numerical analysis on the complex dynamics in a
chemical system

Yan Huang
Department of Mathematics, Huazhong University of Science and Technology,

Wuhan 430074, P.R. China
Department of Control Science and Engineering, Huazhong University of Science and Technology,

Wuhan 430074, P.R. China

Xiao-Song Yang∗

Department of Control Science and Engineering, Huazhong University of Science and Technology,
Wuhan 430074, P.R. China

E-mail: yangxs@cqupt.edu.cn

Received 28 September 2005; revised 11 October 2005

In this paper we present numerical analysis on the complex dynamics in the
bromate-MA-ferroin chemical system. A rigorous computer-assisted proof for the exis-
tence of limit cycle of the system is presented by means of the Fixed-point theorem for
some parameters. By virtue of a recent result of horseshoes theory in dynamical sys-
tems, we give a rigorous computer-assisted proof for chaotic behaviors of the attractors
of the system for another range of parameters. A quantitative description of the com-
plexity of the bromate-MA-ferroin system is given through topological entropy.
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1. Introduction

Mixed-mode oscillations and deterministic chaos are observed in vari-
ous nonlinear chemical reactions [1–9]. In particular, such modes have been
observed in the Belousov–Zhabotinskii (BZ) reaction [1,2,4–7], halogen [1,2] and
oxygen oscillators [8], heterogeneous catalytic [1–3] and electrochemical reactions
[9,10]. Various chemical schemes have been proposed to describe experimentally
observed self-oscillating modes and their bifurcations [1–3,5–8]. Most of these
schemes describe transformations of a rather large number of chemical com-
pounds, which dictates a numerical solution of the corresponding systems of
kinetic equations with high dimensionality (3 or more).
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The BZ reaction (oxidation of organic reagents by bromate, catalyzed by
metal ions) is the best-known chemical system in which various concentration
oscillations have been observed. “Transient period adding” has been observed in
the BZ reaction catalyzed by ferroin if initial malonic acid (MA) concentration
was varied. Experimental results showing regular transient behaviors in a bromate-
MA-ferroin system are described in [11]. The influence of initial ferroin concen-
tration on the regularities in the transient regime has been studied in [11].

In this paper we present numerical analysis on the complex dynamics in the
bromate-MA-ferroin chemical system. Limit cycles are studied for some param-
eters by a rigorous computer-assisted proof; chaotic behaviors of the attrac-
tors of the system is studied for some parameters by virtue of a recent result
of horseshoes theory in dynamical systems [12,13]. Finally, we give an approxi-
mate quantitative estimation of the dynamical complex of the system in terms of
topological entropy [14].

2. A model of the bromate-MA-ferroin system

We study the chaotic property of the bromate-MA-ferroin system by ana-
lyzing the following system of equations:

ẋ = α(y − x3 + µ1x)

ẏ = µ2x − y + z + q

ż = γ (x − z),

(1)

where α, γ, µ1, µ2 and q are guiding parameters.
In [11], an approach has been proposed for finding the conditions for the

existence of mixed-mode oscillations and deterministic chaos in a kinetic scheme
(1) after reduction to system (1), in which mixed-mode oscillations (MMO) and
deterministic chaos are observed [11]. Deterministic chaos is considered to arise
as the result of bifurcations of the mixed-mode oscillations [11].

3. Bifurcations

Figure 1(a) and (b) are the bifurcation plots of (1) as we adjust q and
fix the initial condition (0.1820, −0.0946, 0.2507); Figure 1(c) and (d) are the
peak-bifurcation plots of (1) which are drawn based on the theory of peak to
peak [15] (The theory of peak to peak is devoted to the study of a particular
form of deterministic chaos).

It can be seen from figure 1, for some value of q, there is only one x(z) cor-
responding to it. This shows that a periodic orbit exists for certain q, for example
q = 0.01 and q = 0.015.
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Figure 1. The bifurcation plot of (1) as we adjust q; (a) The bifurcation plot of (1) with the respects
to x; (b) The bifurcation plot of (1) with the respects to z; (c) The peak-bifurcation plot of (1) with

the respects to x; (d) The peak-bifurcation plot of (1) with the respects to z.

4. Limit cycle and fixed-point theorem

In order to discuss limit cycle, we recall the Fixed-point theorem.
Fixed-point theorem: If G ⊂ Rn is a bounded closed set homeomorphic to ball,
F : G → G is continuous map, and F(G) ⊂ G, then a fixed point exists in G.

In (1), let α = 18.7, γ = 4.35, µ1 = 0.44, µ2 = −1.43, q = 0.01, we have
phase portraits of (1) as shown in figure 2. Denote by ϕ(x, t) the solution of (1)
with initial condition x, i.e. ϕ(x, 0) = x. Consider the cross-section M1 as shown
in figure 2, with its four vertexes being (−0.6, 0.1, −0.25), (−0.4, 0.1, −0.25),
(−0.4, 0.1, −0.34) and (−0.6, 0.1, −0.34).

We will study the corresponding map on a subset of M1 as shown
in figure 2(a). We select the quadrangle |ABCD|1 with its vertexes being
(−0.5086, 0.1, −0.3021), (−0.5060, 0.1, −0.3023), (−0.5061, 0.1, −0.3040) and
(−0.5089, 0.1, −0.3038).

F : |ABCD|1 → M1.

The map F is defined as follows: for each point x ∈ |ABCD|1, F (x) is the
first return intersection point with M1 under the flow with initial condition x. It
can be seen from computer simulation that F(|ABCD|1) ⊂ |ABCD|1 as described
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Figure 2. (a) The cross-section M1 and a limit cycle; (b) The quadrangle |ABCD|1 and its image
under map F .

Figure 3. (a) The cross-section M1 and a limit cycle; (b) The quadrangle |ABCD|2 and its image
under map F .

in figure 2(b). According to the Fixed-point theorem, there exists a fixed point,
which shows that system (1) has a periodic orbit when q = 0.01, and figure 2(a)
shows that the periodic orbit is a limit cycle.

When α = 18.7, γ = 4.35, µ1 = 0.44, µ2 = −1.43, q = 0.015, we have phase
portraits of equation (1) as shown in figure 3. Consider the same cross-section
M1.

Select the quadrangle |ABCD|2 with its vertexes being (−0.5053, 0.1, −0.2997),
(−0.5026, 0.1, −0.2997), (−0.5028, 0.1, −0.3006) and (−0.5054, 0.1, −0.3006).

F : |ABCD|2 → M1.

It can be seen form numerical experiment that F(|ABCD|2) ⊂ |ABCD|2 as
described in figure 3(b). According to the Fixed-point theorem, there exists a fixed
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point, which shows that system (1) has a periodic orbit when q = 0.015, and figure
3(a) shows that the periodic orbit is a limit cycle.

In fact, a limit cycle exists in the system when q varies between 0.01 and
0.015. It can be verified by Fixed-point theorem.

5. Review of a topological Horseshoe theorem

In this section, we recall a result on horseshoes theory developed in [12],
which is essential for rigorous verification of existence of chaos in the bromate-
MA-ferroin system discussed in this paper.

Let X be a metric space, D is a compact subset of X, and f : D → X is
map satisfying the assumption that there exist m mutually disjoint compact sub-
sets D1, . . . , Dm of D, the restriction of f to each Di i.e., f |Di is continuous.

Definition 1. Let γ be a compact subset of D, such that for each 1 � i � m,
γi = γ ∩Di is nonempty and compact, then γ is called a connection with respect
to D1, . . . , Dm.

Let F be a family of connections γ s with respect to D1, . . . , Dm satisfying
the following property:

γ ∈ F ⇒ f (γi) ∈ F.

Then F is said to be a f-connected family with respect to D1, . . . , Dm.

Theorem 2. Suppose that there exists a f-connected family F with respect to dis-
jointed compact subsets D1, . . . , Dm. Then there exists a compact invariant set
K ⊂ D, such that f |K is semi-conjugate to m-shift

For the proof of this theorem, see [12].
Here the “semi-conjugate to the m-shift” is conventionally defined in the

following sense. If there exists a continuous and onto map

h : K →
∑

m
,

such that h ◦ f = σ ◦h, then f is said to be semi-conjugate to σ , where σ is the
m-shift (map) and

∑
m is the space of symbolic sequences to be defined below.

Let Sm = {1, . . . , m} be the set of nonnegative successive integer from 1 to m.
Let

∑
m be the collection of all one-infinite sequences with their elements of Sm,

i.e., every element s of
∑

m is of the following form:

s = {s1, . . . , sm, . . . }, si ∈ Sm.

Now consider another sequence s̄i ∈ Sm. The distance between s and s̄ is
defined as
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d(s,
−
s) =

+∞∑

i=1

1

2|i|
|si − s̄i |

|si − s̄i | + 1
(2)

with the distance defined as (2),
∑

m is a metric space, and the following facts
are well known [16].

For the concept of topological entropy, the reader can refer to [17]. We just
recall the result stated in the Lemma 3, which will be used in this paper.

Lemma 3. Let X be a compact metric space, and f :X → X a continuous map.
If there exists an invariant set � ⊂ X such that f |� is semi-conjugate to the
m-shift σ , then

h(f ) � h(σ) = log m,

where h(f ) denotes the entropy of the map f . In addition, for every positive
integer k,

h(f k) = kh(f ).

6. Symmetries of the system

Fix parameter α, γ , µ1, µ2, α = 18.7, γ = 4.35, µ1 = 0.44, µ2 = −1.43, let
q vary in a certain range. Then an interesting phenomenon appears: There exists
some symmetry with respect to state variables and parameter q in the system as
shown in figure 4.

By the transform:

x̄ = −x

ȳ = −y

z̄ = −z

q̄ = −q

(3)

we get the equivalent system from (1) as follows:

˙̄x = α(ȳ − x̄3 + µ1x̄)
˙̄y = µ2x̄ − ȳ + z̄ + q̄
˙̄z = γ (x̄ − z̄).

(4)

It follows that the system (1) is symmetry about x = 0, y = 0, z = 0, p = 0.
Figure 5 is the three Lyapunov exponents of system (1) when q varies

between −0.1 and 0.1. It can be seen from figure 5 that the three Lyapunov
exponents is approximately symmetry about q = 0. The Lyapunov exponent
algorithm used here was proposed in [18].

A limit cycle seems exist when q = 0.0186 according to computed
Lyapunov exponents, and we have the same result by means of other different
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Figure 4. (a) and (b) Chaotic attractor appears if q = ±0.0186 and q = ±0.02; (c) and (d) limit
cycles appears when q = ±0.01 and q = ±0.015.

Figure 5. The Lyapunov exponents for parameter −0.1 � q � 0.1.

algorithms presented in [19,20]. This is conflict with the statement in [11] which
asserted that the system is chaotic when q = 0.0186 without any details. The
orbits of the system when q = 0.0186 are shown in figure 6. Due to the fact that
LE computation is not always valid in studying complex dynamics of nonlinear
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Figure 6. The Spiraling attractor of equation (1) with q=0.0186 and the equilibrium (0.2775,

−0.1007, 0.2775).

Figure 7. The attractor of (2) and cross-section M2.

systems we study this system by virtue of a recent result of horseshoes theory
in dynamical systems [12,13], we show that the system is chaotic by a rigorous
computer-assisted proof.

7. Horseshoes in bromate-MA-ferroin system

In (2), let α = 18.7, γ = 4.35, µ1 = 0.44, µ2 = −1.43, q = 0.0186, we have
the attractor as shown in figure 7. Denote by ϕ1(x, t) the solution of (2) with
initial condition x, i.e. ϕ1(x, 0) = x. Consider the cross-section M2 as shown in
figure 7, with its four vertices being (0, 0.05, 0), (−0.6, 0.05, 0), (−0.6, 0.05, −0.4)

and (0, 0.05, −0.4).
We will study the corresponding Poincaré map on a subset of M2. We select

the quadrangle |ABCD| with its vertexes being A(−0.3673, 0.05, −0.14117),
B(−0.3440, 0.05, −0.1369), C(−0.3438, 0.05, −0.1384) and D(−0.3666, 0.05,

−0.1424).

P : |ABCD| → M2.

The map P is defined as follows: for each point x ∈ |ABCD|, P(x) is the
first return intersection point with M2 under the flow with initial condition x.
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Now we expect to find two subsets of |ABCD| as the subset D1, D2 defined
in Definition 1. By a great deal of computer simulation, we find two subsets
a1 and a2 of |ABCD|. The four vertices of a1 are (−0.3673, 0.05, −0.14117),
(−0.36311, 0.05, −0.1404), (−0.3625, 0.05, −0.14168) and (−0.3666, 0.05, −0.1424).

The four vertices of a2 are (−0.36171, 0.05, −0.14015), (−0.3440, 0.05,

−0.1369), (−0.3438, 0.05, −0.1384) and (−0.36113, 0.05, −0.14144).
The subsets a1 and a2 of |ABCD| are shown in figure 8(a) and (b).
As shown in figure 8, where l1 and r1 are the left side and right side of a1,

l2 and r2 are the left side and right side of a2, respectively, Since P(l1) is located
at the right of r2, and P(r1) is located at the left side of l1, it is easy to see that
for every line γ connecting l1 and r1 in a1, there exists a subline of P(γ ) which
connects l1 and r2 in |ABCD|. Since P(r2) is located at the right of r2, and P(l2)

is located at the left side of l1, it is easy to see that for every line γ̄ connecting l2
and r2 in a2, there exists a subline of P(γ̄ ) which connects l1 and r2 in |ABCD|.

It is easy to see from figure 8 that every line l lying in |ABCD| and con-
necting the side l1 and r2 has nonempty connections with a1 and a2. Furthermore,
P(l ∩ a1) connects l1 and r2 from the above arguments, P(l ∩ a2) also connects
l1 and r2. Therefore, it is easy to see, in view of Definition 1, that there exists a
P -family with respect to these two subsets a1 and a2 for the map P . It follows
from Theorem 2 that there exists an invariant set K of |ABCD|, such that P

restricted to K is semi-conjugated to 2-shift dynamics. Let h(P ) be the entropy
of the map P , it can be concluded from Lemma 3 that h(P ) � h(σ) = log 2,
consequently the entropy of the map P is not less than log 2.

Numerical work shows that the average return time is 8.8114, the maximum
return time is 9.6078, and the minimum return time is 7.8919. The topological
entropy of the system is not less than log 2/8.8114 = 0.0787 > 0 by Abramov’s
formula [14], thereby having a quantitative description of complex of dynamics.

In [11], it was asserted from the oscillation experiments that a continuously
stirred tank reactor (CSTR) the BZ reaction could exhibit simple and complex
periodic oscillations as well as chaotic behavior. Here, we have shown that the

Figure 8. (a) The subset a1, a2 and the image of a1; (b) The subset a1, a2 and the image of a2.
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attractors are chaotic by giving a rigorous verification for existence of horseshoes
in the system. We have shown that the Poincaré map derived from the system is
semi-conjugate to the 2-shift map, and the topological entropy of the system is
not less than 0.0787.

It can be concluded from the symmetry as discussed in section 6 of sys-
tem (1) that there exists horseshoes when q = −0.0186. In the same manner, we
can discuss the system (1) with q = ±0.02.

8. Conclusion

Applying the concepts and techniques issued from dynamical systems the-
ory, we have been able to show the existence of chaotic behavior in the bromate-
MA-ferroin system. In this paper we present a rigorous computer-assisted proof
for the existence of horseshoes in the bromate-MA-ferroin system. We show that
the dynamics of the Poincaré map derived from the ordinary differential equa-
tions of the system is semi-conjugate to the 2-shift map, and the topological
entropy of the system is not less than 0.0787. The proof is based on a newly
established Theorem 2 from [12] on the existence of topological horseshoe and
computer simulation.
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